qa-and-rag-ai-assistant/IMPLEMENTATION_SUMMARY.md
2026-01-13 15:38:27 +03:00

287 lines
8.3 KiB
Markdown

# PostgreSQL Database Implementation Summary
## What Was Done
Successfully migrated from in-memory fake_db dictionaries to PostgreSQL with async SQLAlchemy ORM.
## Files Modified
### 1. [database/database.py](database/database.py) - **COMPLETELY REWRITTEN**
**Changes:**
- ✅ Converted from synchronous to **async SQLAlchemy** (using `asyncpg` driver)
- ✅ Added proper `User` model with:
- Auto-increment `id` as primary key
- Unique indexed `telegram_id` and `token`
- `created_at` and `updated_at` timestamps
- Composite index on `token` and `status`
- ✅ Added `Profile` model with:
- All fields from your Pydantic model
- Email as unique indexed field
- Timestamps
- ✅ Created `get_db()` dependency for FastAPI
- ✅ Added `init_db()` and `drop_db()` utility functions
- ✅ Configured connection pooling and async engine
### 2. [app.py](app.py) - **MAJOR UPDATES**
**Changes:**
- ✅ Removed `profile_db = {}` in-memory dict
- ✅ Added database imports and `Depends(get_db)` to all endpoints
- ✅ Added `@app.on_event("startup")` to initialize DB on app start
- ✅ Updated `/profile` POST endpoint:
- Now saves to PostgreSQL `profiles` table
- Handles create/update logic
- Properly commits transactions
- ✅ Updated `/profile/{email}` GET endpoint:
- Queries from PostgreSQL
- Converts DB model to Pydantic response
- ✅ Updated `/login` endpoint:
- Creates `User` record with pending status
- Stores in PostgreSQL instead of dict
- ✅ Updated `/check-auth/{token}` endpoint:
- Queries user by token from PostgreSQL
- Returns proper status
- ✅ Updated `/database/tokens` endpoint:
- Lists all users from database
### 3. [bot.py](bot.py) - **MAJOR REFACTORING**
**Changes:**
- ✅ Removed all references to `fake_db`
- ✅ Removed `app.db = fake_db` synchronization code
- ✅ Added proper database imports
- ✅ Updated `/start` command handler:
- Uses `AsyncSessionLocal()` for DB sessions
- Queries user by token
- Updates telegram_id, username, and status
- Proper error handling with rollback
- ✅ Added `init_db()` call in `start_bot()`
### 4. [requirements.txt](requirements.txt) - **CREATED**
**New dependencies:**
- FastAPI + Uvicorn
- Pydantic with email support
- SQLAlchemy 2.0 with async support
- asyncpg (PostgreSQL async driver)
- psycopg2-binary (backup driver)
- greenlet (required for SQLAlchemy async)
- aiogram 3.3.0 (Telegram bot)
- minio (file storage)
- python-dotenv
- Testing: pytest, pytest-asyncio, httpx
### 5. [init_db.py](init_db.py) - **CREATED**
**Purpose:** Interactive script to initialize or reset database
**Features:**
- Option 1: Create tables
- Option 2: Drop and recreate (reset)
- Safe with confirmation prompts
### 6. [README.md](README.md) - **COMPLETELY REWRITTEN**
**New content:**
- Complete setup instructions
- Database schema documentation
- API endpoints reference
- Usage flow diagram
- Development guide
- Troubleshooting section
## Database Schema
### Users Table
```sql
CREATE TABLE users (
id SERIAL PRIMARY KEY,
telegram_id INTEGER NOT NULL UNIQUE,
token VARCHAR(255) NOT NULL UNIQUE,
username VARCHAR(100),
status VARCHAR(50) NOT NULL DEFAULT 'pending',
created_at TIMESTAMP NOT NULL DEFAULT NOW(),
updated_at TIMESTAMP NOT NULL DEFAULT NOW()
);
CREATE INDEX idx_token_status ON users(token, status);
CREATE UNIQUE INDEX ix_users_telegram_id ON users(telegram_id);
CREATE UNIQUE INDEX ix_users_token ON users(token);
```
### Profiles Table
```sql
CREATE TABLE profiles (
id SERIAL PRIMARY KEY,
email VARCHAR(255) NOT NULL UNIQUE,
name VARCHAR(255) NOT NULL,
position VARCHAR(255) NOT NULL,
competencies TEXT,
experience TEXT,
skills TEXT,
country VARCHAR(100),
languages VARCHAR(255),
employment_format VARCHAR(100),
rate VARCHAR(100),
relocation VARCHAR(100),
cv_url VARCHAR(500),
created_at TIMESTAMP NOT NULL DEFAULT NOW(),
updated_at TIMESTAMP NOT NULL DEFAULT NOW()
);
CREATE UNIQUE INDEX ix_profiles_email ON profiles(email);
```
## Architecture Benefits
### Before (In-Memory Dicts)
❌ Data lost on restart
❌ No persistence
❌ No concurrent access control
❌ No data validation at DB level
❌ No relationships or constraints
❌ No transaction safety
### After (PostgreSQL + SQLAlchemy)
**Persistent** - Data survives restarts
**ACID compliant** - Transaction safety
**Concurrent** - Handle multiple requests
**Indexed** - Fast queries on telegram_id, token, email
**Constraints** - Unique tokens, emails
**Timestamps** - Track created_at, updated_at
**Async** - Non-blocking database operations
**Pooling** - Efficient connection management
## How It Works Now
### Authentication Flow
1. User visits website → `GET /login`
2. FastAPI creates new `User` record in PostgreSQL:
```python
User(telegram_id=0, token=uuid4(), status='pending')
```
3. Returns Telegram bot URL with token
4. User clicks link → Opens bot → Sends `/start {token}`
5. Bot queries database for token:
```python
user = await session.execute(select(User).where(User.token == token))
```
6. Bot updates user:
```python
user.telegram_id = message.from_user.id
user.username = message.from_user.username
user.status = 'success'
await session.commit()
```
7. Website polls `/check-auth/{token}` → Gets auth status from DB
### Profile Management Flow
1. User submits profile → `POST /profile`
2. FastAPI uploads CV to MinIO
3. Checks if profile exists:
```python
existing = await db.execute(select(Profile).where(Profile.email == email))
```
4. Updates existing or creates new profile
5. Commits to PostgreSQL
## Testing the Implementation
### 1. Initialize Database
```bash
python init_db.py
# Choose option 1 to create tables
```
### 2. Verify Tables
```bash
docker exec rag_ai_postgres psql -U postgres -d rag_ai_assistant -c "\dt"
# Should show: users, profiles
```
### 3. Test Database Connection
```bash
.venv/bin/python database/database.py
# Should create test user and retrieve it
```
### 4. Start Application
```bash
# Option A: Together
python bot.py
# Option B: Separate terminals
uvicorn app:app --reload
# In another terminal:
python -c "from bot import start_bot; import asyncio; asyncio.run(start_bot())"
```
### 5. Test Endpoints
```bash
# Test login
curl http://localhost:8000/login
# Test check-auth
curl http://localhost:8000/check-auth/{token}
# Test tokens list
curl http://localhost:8000/database/tokens
```
## Common Issues & Solutions
### Issue: "No module named 'sqlalchemy'"
**Solution:** Install dependencies
```bash
uv pip install -r requirements.txt
```
### Issue: "the greenlet library is required"
**Solution:** Already added to requirements.txt
```bash
uv pip install greenlet==3.0.3
```
### Issue: "Connection refused" to PostgreSQL
**Solution:** Start Docker services
```bash
docker-compose up -d
docker ps # Verify postgres is running
```
### Issue: Old table structure
**Solution:** Reset database
```bash
python init_db.py # Choose option 2 (reset)
```
## Next Steps (Optional Improvements)
1. **Add foreign key relationship** between users and profiles
2. **Implement token expiration** (add expires_at column)
3. **Add database migrations** (Alembic)
4. **Add indexes** for common queries
5. **Implement connection pooling tuning** for production
6. **Add Redis caching** for frequently accessed data
7. **Implement soft deletes** (deleted_at column)
8. **Add audit logs** table for tracking changes
9. **Create database backup scripts**
10. **Add monitoring** with Prometheus/Grafana
## Code Quality Improvements Made
-**Type hints** throughout database code
-**Docstrings** on all major functions
-**Error handling** with try/except and rollback
-**Session management** using context managers
-**Connection pooling** with proper configuration
-**Index optimization** on frequently queried fields
-**Async/await** pattern throughout
-**Environment variables** for all config
-**Dependency injection** with FastAPI Depends()
## Summary
Your application now has a **production-ready database layer** with:
- ✅ Proper ORM models
- ✅ Async database operations
- ✅ Transaction safety
- ✅ Data persistence
- ✅ Proper indexing
- ✅ Error handling
- ✅ Clean architecture
All the logic for authentication tokens and profile storage has been successfully migrated from in-memory dictionaries to PostgreSQL!