from qdrant_client.models import Distance, VectorParams from langchain_qdrant import QdrantVectorStore from langchain_openai import OpenAIEmbeddings from qdrant_client import QdrantClient client = QdrantClient(path="./embeddings") if not client.collection_exists("vacancies"): client.create_collection( collection_name="vacancies", vectors_config=VectorParams(size=3072, distance=Distance.COSINE) ) vector_store = QdrantVectorStore( client=client, collection_name="vacancies", embedding=OpenAIEmbeddings(model="text-embedding-3-large"), )