Compare commits
4 Commits
55ee3b7ba4
...
3a7098f751
| Author | SHA1 | Date | |
|---|---|---|---|
| 3a7098f751 | |||
| 41b3a250a7 | |||
| 96d8621d49 | |||
| b23502ee6a |
@ -0,0 +1,3 @@
|
||||
import logging
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
@ -1,5 +1,6 @@
|
||||
import io
|
||||
import os
|
||||
import asyncio
|
||||
import traceback
|
||||
|
||||
from asgiref.sync import sync_to_async
|
||||
@ -66,7 +67,7 @@ async def next_vacancy(update: Update, context: ContextTypes.DEFAULT_TYPE):
|
||||
await context.bot.send_message(chat_id=update.effective_chat.id, text=message)
|
||||
return
|
||||
|
||||
vacancy = get_next_vacancy(customer_cv)
|
||||
vacancy = await asyncio.to_thread(get_next_vacancy, customer_cv)
|
||||
if not vacancy:
|
||||
message = "Вакансии закончились, возвращайтесь позже!"
|
||||
await context.bot.send_message(chat_id=update.effective_chat.id, text=message)
|
||||
@ -125,25 +126,24 @@ async def handle_document(update: Update, context: ContextTypes.DEFAULT_TYPE):
|
||||
job_titles: list[Literal[tuple(db_job_titles)]]
|
||||
min_salary_rub: int | None
|
||||
max_salary_rub: int | None
|
||||
years_of_experience: int | None
|
||||
work_format: Literal["Удаленный", "Офис", "Гибрид", None]
|
||||
|
||||
openai_client = ChatOpenAI(model_name="gpt-5-mini", temperature=0, seed=42, top_p=1)
|
||||
openai_client = ChatOpenAI(model_name="gpt-5-mini")
|
||||
structured_llm = openai_client.with_structured_output(Structure)
|
||||
|
||||
prompt = f"""
|
||||
Ты — HR-классификатор. Ниже приведён список допустимых профессий.
|
||||
Твоя задача — выбрать наиболее подходящие по смыслу.
|
||||
Качество классификации - самое важное.
|
||||
Игнорируй орфографические и стилистические различия.
|
||||
Резюме:
|
||||
{resume}
|
||||
"""
|
||||
prompt = f"Extract sturcture from following CV. {resume}"
|
||||
print('1')
|
||||
response = await structured_llm.ainvoke(prompt)
|
||||
print('2')
|
||||
|
||||
customer = await Customer.objects.aget(telegram_id=update.effective_user.id)
|
||||
customer_cv, _ = await CustomerCV.objects.aupdate_or_create(customer=customer, defaults=dict(
|
||||
content=resume,
|
||||
min_salary_rub=response.min_salary_rub,
|
||||
max_salary_rub=response.max_salary_rub,
|
||||
years_of_experience=response.years_of_experience,
|
||||
work_format=response.work_format,
|
||||
))
|
||||
await customer_cv.job_titles.aset([job_title_map[job_title] for job_title in response.job_titles])
|
||||
|
||||
|
||||
@ -24,7 +24,8 @@ WHERE timestamp >= %(timestamp)s
|
||||
'заниматься', 'формат', 'занятость', 'вилка', 'должност', 'контакт'
|
||||
]) >= 5
|
||||
AND arrayCount(x -> position(lower(message), x) > 0, [
|
||||
'о себе', 'обо мне', 'умею', '#ищу', '#резюме', 'университет', 'колледж'
|
||||
'о себе', 'обо мне', 'умею', '#ищу', '#резюме', 'университет', 'колледж',
|
||||
'не будет опубликовано'
|
||||
]) = 0
|
||||
ORDER BY timestamp ASC
|
||||
"""
|
||||
@ -41,8 +42,10 @@ class Command(BaseCommand):
|
||||
job_title: Literal[tuple(job_titles)]
|
||||
min_salary_rub: int | None
|
||||
max_salary_rub: int | None
|
||||
min_years_of_experience: int
|
||||
work_format: Literal["remote", "office", None]
|
||||
|
||||
openai_client = ChatOpenAI(model_name="gpt-5-mini", reasoning_effort="minimal", temperature=0, seed=42, top_p=1)
|
||||
openai_client = ChatOpenAI(model_name="gpt-5-mini", temperature=0, seed=42, top_p=1)
|
||||
structured_llm = openai_client.with_structured_output(Structure)
|
||||
|
||||
last_timestamp = timezone.now() - timedelta(days=30)
|
||||
@ -59,6 +62,7 @@ class Command(BaseCommand):
|
||||
Ты — HR-классификатор. Ниже приведён список допустимых профессий.
|
||||
Твоя задача — выбрать наиболее подходящую по смыслу.
|
||||
Качество классификации - самое важное.
|
||||
Если не уверен, то лучше укажи "Другое", ошибки недопустимы.
|
||||
Игнорируй орфографические и стилистические различия.
|
||||
Вакансия:
|
||||
{row[3]}
|
||||
@ -74,6 +78,8 @@ class Command(BaseCommand):
|
||||
job_title_id=job_title_map[response.job_title],
|
||||
min_salary_rub=response.min_salary_rub,
|
||||
max_salary_rub=response.max_salary_rub,
|
||||
min_years_of_experience=response.min_years_of_experience,
|
||||
work_format=response.work_format,
|
||||
content=message,
|
||||
timestamp=timezone.make_aware(timestamp),
|
||||
link=f"https://t.me/{chat_username}/{telegram_id}",
|
||||
|
||||
@ -0,0 +1,35 @@
|
||||
# Generated by Django 5.2.7 on 2025-11-09 12:54
|
||||
|
||||
from django.db import migrations, models
|
||||
|
||||
|
||||
class Migration(migrations.Migration):
|
||||
|
||||
dependencies = [
|
||||
('main', '0011_remove_customercv_job_title_customercv_job_titles_and_more'),
|
||||
]
|
||||
|
||||
operations = [
|
||||
migrations.AddField(
|
||||
model_name='customercv',
|
||||
name='work_format',
|
||||
field=models.CharField(blank=True, max_length=64, null=True),
|
||||
),
|
||||
migrations.AddField(
|
||||
model_name='customercv',
|
||||
name='years_of_experience',
|
||||
field=models.PositiveBigIntegerField(default=0),
|
||||
preserve_default=False,
|
||||
),
|
||||
migrations.AddField(
|
||||
model_name='vacancy',
|
||||
name='min_years_of_experience',
|
||||
field=models.PositiveBigIntegerField(default=0),
|
||||
preserve_default=False,
|
||||
),
|
||||
migrations.AddField(
|
||||
model_name='vacancy',
|
||||
name='work_format',
|
||||
field=models.CharField(blank=True, max_length=64, null=True),
|
||||
),
|
||||
]
|
||||
@ -28,6 +28,8 @@ class CustomerCV(models.Model):
|
||||
job_titles = models.ManyToManyField(JobTitle, related_name="vacancies")
|
||||
min_salary_rub = models.PositiveIntegerField(null=True, blank=True, default=None)
|
||||
max_salary_rub = models.PositiveIntegerField(null=True, blank=True, default=None)
|
||||
years_of_experience = models.PositiveBigIntegerField()
|
||||
work_format = models.CharField(max_length=64, null=True, blank=True)
|
||||
content = models.TextField()
|
||||
created_at = models.DateTimeField(auto_now_add=True)
|
||||
|
||||
@ -45,6 +47,8 @@ class Vacancy(models.Model):
|
||||
external_id = models.CharField(max_length=255, unique=True)
|
||||
min_salary_rub = models.PositiveIntegerField(null=True, blank=True, default=None)
|
||||
max_salary_rub = models.PositiveIntegerField(null=True, blank=True, default=None)
|
||||
min_years_of_experience = models.PositiveBigIntegerField()
|
||||
work_format = models.CharField(max_length=64, null=True, blank=True)
|
||||
content = models.TextField()
|
||||
timestamp = models.DateTimeField()
|
||||
link = models.URLField()
|
||||
|
||||
@ -1,12 +1,14 @@
|
||||
from vacancies.main.models import Vacancy
|
||||
from django.db.models import Q
|
||||
|
||||
|
||||
def get_next_vacancy(customer_cv):
|
||||
vacancy = Vacancy.objects.exclude(
|
||||
id__in=customer_cv.customer.recommended_vacancies.values_list("vacancy_id", flat=True),
|
||||
).filter(
|
||||
vacancy = Vacancy.objects.filter(
|
||||
~Q(id__in=customer_cv.customer.recommended_vacancies.values_list("vacancy_id", flat=True)),
|
||||
Q(min_salary_rub__isnull=True) | Q(min_salary_rub__gt=customer_cv.min_salary_rub),
|
||||
Q(work_format__isnull=True) | Q(work_format=customer_cv.work_format),
|
||||
job_title__title__in=customer_cv.job_titles.values_list("title", flat=True),
|
||||
min_salary_rub__gt=customer_cv.min_salary_rub,
|
||||
min_years_of_experience__lte=customer_cv.years_of_experience,
|
||||
).first()
|
||||
if vacancy:
|
||||
customer_cv.customer.recommended_vacancies.create(vacancy=vacancy)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user