Change recomendation strategy

This commit is contained in:
estromenko 2025-11-07 00:06:31 +03:00
parent 7cce1cdc04
commit df33ce79bb
4 changed files with 1294 additions and 706 deletions

View File

@ -9,6 +9,7 @@ dependencies = [
"django>=5.2.7",
"gunicorn>=23.0.0",
"langchain>=0.3.27",
"langchain-community>=0.4.1",
"langchain-openai>=0.3.35",
"langchain-qdrant>=1.1.0",
"langgraph-checkpoint-postgres>=3.0.0",

1831
uv.lock

File diff suppressed because it is too large Load Diff

View File

@ -1,19 +1,18 @@
import traceback
from itertools import batched
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime, timedelta
from django.core.management import BaseCommand
from django.conf import settings
import clickhouse_connect
from vacancies.main.vector_store import add_vectors, extract_features, qdrant_client
from django.core.management import BaseCommand
from qdrant_client.models import OrderBy
from vacancies.conf.settings import CLICKHOUSE_HOST, CLICKHOUSE_PORT
from vacancies.main.vector_store import add_vectors, extract_features, qdrant_client
clickhouse_client = clickhouse_connect.create_client(host=CLICKHOUSE_HOST, port=CLICKHOUSE_PORT)
query = """
SELECT id, chat_username, telegram_id, message, timestamp
FROM telegram_parser_chatmessage
WHERE timestamp >= now() - INTERVAL 30 DAY
WHERE timestamp >= %(timestamp)s
AND length(message) > 150
AND arrayCount(x -> position(message, x) > 0, [
'ваканси', 'ищем', 'требуется', 'разработчик', 'будет плюсом',
@ -49,24 +48,31 @@ class Command(BaseCommand):
next_page_offset = response[1]
exist_points_set = tuple(set(exist_points_ids))
result_rows = clickhouse_client.query(query, parameters={"exist_points": exist_points_set}).result_rows
with ThreadPoolExecutor(max_workers=settings.COLLECT_VACANCIES_BATCH_SIZE) as pool:
pool.map(self._process_batch, batched(result_rows, settings.COLLECT_VACANCIES_BATCH_SIZE))
response = qdrant_client.scroll(
collection_name="vacancies",
limit=1,
order_by=OrderBy(
key="timestamp",
direction="desc",
),
)
last_point_timestamp = datetime.now() - timedelta(days=30)
if response:
last_point_timestamp = response[0][0].payload["timestamp"]
def _process_batch(self, result_rows):
try:
for index, row in enumerate(result_rows):
(id, chat_username, telegram_id, message, timestamp) = row
result_rows = clickhouse_client.query(
query,
parameters={"timestamp": last_point_timestamp, "exist_points": exist_points_set},
).result_rows
link = f"https://t.me/{chat_username}/{telegram_id}"
print(f"Processing {index+1}/{len(result_rows)} link: {link}")
features = extract_features(message)
add_vectors(
"vacancies",
id,
features.model_dump(),
{'content': message, 'features_json': features.model_dump(), "link": link, "timestamp": timestamp},
)
except Exception as exc:
traceback.print_exception(exc)
for index, row in enumerate(result_rows):
(id, chat_username, telegram_id, message, timestamp) = row
link = f"https://t.me/{chat_username}/{telegram_id}"
print(f"Processing {index+1}/{len(result_rows)} link: {link}")
features = extract_features(message)
add_vectors(
"vacancies",
id,
features.model_dump(),
{'content': message, 'features_json': features.model_dump(), "link": link, "timestamp": timestamp},
)

View File

@ -1,12 +1,10 @@
from qdrant_client import models
from langchain_openai import OpenAIEmbeddings
from langchain_community.embeddings import DeepInfraEmbeddings
from langchain_openai import ChatOpenAI
from qdrant_client import QdrantClient
from qdrant_client.models import Filter
from vacancies.main.models import VacancyFeatures
from qdrant_client import QdrantClient, models
from qdrant_client.models import Filter, HasIdCondition
from vacancies.conf.settings import QDRANT_URL
from vacancies.main.models import RecommendedVacancy
from qdrant_client.models import HasIdCondition
from vacancies.main.models import RecommendedVacancy, VacancyFeatures
qdrant_client = QdrantClient(url=QDRANT_URL)
@ -16,37 +14,44 @@ FEATURE_NAMES = [
]
weights = {
"job_title": 25,
"job_title": 42,
"employment_type": 5,
"work_format": 5,
"experience": 8,
"position_level": 12,
"industry": 10,
"tech_stack": 14,
"location": 5,
"salary_range": 5,
"languages": 5,
"position_level": 5,
"industry": 1,
"tech_stack": 10,
"location": 4,
"salary_range": 10,
"languages": 4,
"education": 2,
"schedule": 2,
"additional_requirements": 2,
}
vectors_config = {
name: models.VectorParams(size=3072, distance=models.Distance.COSINE) for name in FEATURE_NAMES
name: models.VectorParams(size=4096, distance=models.Distance.COSINE) for name in FEATURE_NAMES
}
if not qdrant_client.collection_exists("vacancies"):
qdrant_client.create_collection(
collection_name="vacancies",
vectors_config=vectors_config
vectors_config=vectors_config,
)
qdrant_client.create_payload_index(
collection_name="vacancies",
field_name="timestamp",
field_schema="datetime",
)
if not qdrant_client.collection_exists("cvs"):
qdrant_client.create_collection(
collection_name="cvs",
vectors_config=vectors_config
vectors_config=vectors_config,
)
embedding = OpenAIEmbeddings(model="text-embedding-3-large")
embedding = DeepInfraEmbeddings(
model_id="Qwen/Qwen3-Embedding-8B-batch",
)
def _prepare_texts(features):
"""Prepare texts for each feature from features dict."""
@ -66,7 +71,7 @@ def add_vectors(collection_name: str, _id: int, features: dict, payload: dict):
texts = _prepare_texts(features)
vectors = {}
for name, text in texts.items():
vectors[name] = [0.0] * 3072
vectors[name] = [0.0] * 4096
if text:
vec = embedding.embed_query(text)
vectors[name] = vec
@ -93,7 +98,7 @@ def add_vectors(collection_name: str, _id: int, features: dict, payload: dict):
scored.append({"id": vid, "score": total})
scored.sort(key=lambda x: x["score"], reverse=True)
if scored and scored[0]["score"] > 90: # threshold
if scored and scored[0]["score"] > 80: # threshold
return
qdrant_client.upsert(
@ -118,48 +123,43 @@ def search_similarities(query_filter: Filter, cv_id: int):
max_similarities = {}
vacancies_content = {}
for name, vec in cv.vector.items():
if any(v != 0 for v in vec):
results = qdrant_client.query_points(
collection_name="vacancies",
query=vec,
using=name,
limit=100,
with_payload=True,
query_filter=query_filter,
)
for res in results.points:
vid = res.id
sim = res.score
if vid not in max_similarities:
max_similarities[vid] = {}
max_similarities[vid][name] = sim
if vid not in vacancies_content:
vacancies_content[vid] = {}
vacancies_content[vid]["content"] = res.payload["content"]
vacancies_content[vid]["link"] = res.payload["link"]
results = qdrant_client.query_points(
collection_name="vacancies",
query=vec,
using=name,
limit=100000,
with_payload=True,
query_filter=query_filter,
)
for res in results.points:
vid = res.id
sim = res.score
if vid not in max_similarities:
max_similarities[vid] = {}
max_similarities[vid][name] = sim
if vid not in vacancies_content:
vacancies_content[vid] = {}
vacancies_content[vid]["content"] = res.payload["content"]
vacancies_content[vid]["features_json"] = res.payload["features_json"]
vacancies_content[vid]["link"] = res.payload["link"]
scored = []
for vid, feature_sims in max_similarities.items():
total = sum(feature_sims[feature] * weights.get(feature, 1) for feature in feature_sims)
scored.append({"id": vid, "score": total, "content": vacancies_content[vid]["content"], "link": vacancies_content[vid]["link"]})
scored.append({
"id": vid,
"score": total,
"content": vacancies_content[vid]["content"],
"features_json": vacancies_content[vid]["features_json"],
"link": vacancies_content[vid]["link"],
"sims": feature_sims,
})
scored.sort(key=lambda x: x["score"], reverse=True)
import pprint
pprint.pprint(scored[:5])
prompt = f"""
Резюме: {cv.payload['content']}
Среди вакансий ниже выбери одну наиболее релевантную и выведи ее индекс(от 0 до 9).
Иногда могут попадаться чужие резюме вместо вакансий, их отдавать нельзя.
В ответе выведи только число. Если среди вакансий нет подходящих, то верни -1.
{scored[:10]}
"""
openai_client = ChatOpenAI(model_name="gpt-5-mini", reasoning_effort="minimal", temperature=0, seed=42, top_p=1)
response = openai_client.invoke(prompt)
index = int(response.content)
if index == -1:
return None
return scored[index]["id"], scored[index]["content"], scored[index]["link"]
return scored[0]["id"], scored[0]["content"], scored[0]["link"]
def extract_features(content: str) -> VacancyFeatures: